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Abstract

An algorithm is discussed for converting a class of recursive processes to a parallel system. It is argued that this al-
gorithm can be superior to certain methods currently found in the literature for an important subset of problems. The
cases of homogeneous and non-homogeneous two term recursions are treated. The basic cost factor of the algorithm
over non-parallel operations is 2 if only the final values of the sequence is needed and 4 if all elements are required.
In practice, these factors can be reduced considerably. Applications to three problems (finding the eigenvalues of a
tri-diagonal matrix, the solution of a radial wave equation and the solution of a tri-diagonal matrix) are discussed.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

The solution of some problems requires a greater number of operations for an appropriate parallel al-
gorithm than one that would be used in a strictly serial calculation. A gain in speed can still be expected by
running them on a parallel machine but there is a cost factor since one cannot expect to achieve an increase
in speed equal to the number of processors when compared with the best non-parallel algorithm.

As an example, consider two term iteration

xi“:a,»x,«—i—b,«x,-,l, 121727,N (1)

One method suggested in the literature [1] is to replace the steps in the algorithm by matrix multiplication.

This algorithm requires extra operations which will be discussed further at the end of Section 2.1.
Another possible algorithm (the one considered here) is based on the fact that there are only two inde-

pendent solutions to Eq. (1). The proper linear combination of them to represent the actual solution can be
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determined by the starting values. In this paper, the application of such an algorithm for Eq. (1), as well as a
similar one for the iteration when there is an additional term, ¢;, on the right-hand side, is discussed.

2. General description of the algorithm
2.1. Homogeneous case

A recursion relation, such as Eq. (1), can be viewed as one long sequence of values which leads from a
beginning pair of values to the end. A desirable procedure for a parallel system would be to cut up this
sequence into separate strips (as many as there are processors) and let each processor work through its part
independently. For the first processor, there is no problem since the starting values are known there. But the
second processor (and the rest) will not have their starting values available (the final values in the previous
processor), so this procedure does not seem possible. With a moderate expense, however, it can be done.
Since there are only two independent solutions of Eq. (1) we can construct two (arbitrary but independent)
solutions, which will provide basis functions, and combine them when the starting values for each processor
are known from the result of the previous one. For simplicity, consider the same algorithm running on all
processors ignoring the fact that it could be computed more efficiently on the first processor.

Let the total length of the recursion relation be N+ 2 (including the first two starting values, hence the 2)
with M processors. Each processor will be assigned a recursion of length L= N/M which is supposed to be
integer and large. The work to be done by each processor will be proportional to M since it never has to
calculate the first two values. In order to see how such an algorithm works, let us analyze a (very modest)
system of 32 recursion steps to be calculated with four processors.

Each processor will do the recursion twice, once with starting values 0 and 1 and once with values 1 and
0. That is, each processor calculates the two basis functions starting with the first two values (1,0) and (0,1).
It uses the appropriate values of @; and b, for its position in the global sequence, of course. For the first
processor, the basis functions start with

y=1; y°=0 and H)'=0; W =1. (2)
Since any solution of the recursive formula can be written as a linear combination of the two basis functions

x; = oy + By, (3)
we can see from the definition of the initial values in the first processor that

Xo = o X1 = ﬁ7 (4)

where xo and x; are the starting values for Eq. (1). We could find all of the values of the function in the first
processor by calculating

x; = xop1° +xp"  First Processor i=0,1,...,8,9 (5)

but it is better not to do that immediately. Since each value is independent, we may calculate only the last
two values if we wish. These would be, in this simple case, xg and xy. Notice that these are the starting val-
ues for the second processor. Thus, for the second processor since it started with i’ =1I;
¥’ =0 and ' = 0; ' = 1 choosing the proper linear combination (x and f8) to give the true values of
xg and x9 (known from the first processor) again we could calculate all of the values

x; = xsy° +x9)""  Second Processor i=38,9,...,16,17. (6)

Again, we need calculate only the last two (x;¢ and x;7) to get the starting values for the third processor.
From these, we obtain the last values in the third processor x,4 and x,s and the fourth processor x3, and
Xx33. Thus, we have found the last two values of the sequence with the evaluation (after the parallel compu-
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tations) of eight equations. For four processors, there will always be eight equations regardless of the length
of iteration, L, within each processor.

Table 1 gives the operations explicitly for this small example. In this case, each processor has only eight
iterations to do. In a more practical, example numbers more like 10 might be expected. The table lists the
initial conditions at the top followed by the iterations. The generic variable, y, indicates both y°! and y'® are
to be calculated.

After this work has been done the following sequential steps need to be taken using only the last two
values taken from each processor.

Xy =xopg) + X8, Xo = xovg + X1,

x16 = XsVig + x5, x17 = X519 + x0)1,
X4 = xmyéﬂ + X17y(2)41p X25 = xléy;(s) + x17y(2);,
X3 = xz4y£ + xzsyé’é, X33 = xwéé’ + Xzsyg);

The absolute indices have been used above on the basis functions. It is often more convenient to use a com-
bination of the local index and the processor number. The local index will be denoted by 4 and runs from 0
to L+1.

In general, only two values in any processor need be computed to find the starting values and hence the
coeflicients of the two basis functions for the next processor. So the serial overhead is only twice 3 floating
point operations per processor. Even if all of the values of the sequence are needed, it is better to do this
operation first, because the intermediate values can then be found in parallel using the starting values ob-
tained in this way.

Repeating the above argument for the general case with M processors labeled ©=0,1,2,...,M—1 and
N+ 2 total values of the indices of x;, the resulting sequences are calculated in a (long) parallel calculation,

“y;' and MY A=23,.L+1; [w=0,1,....M—1]. )

The square brackets indicate that the calculations for the different values of u are done in parallel. After this
step, the equations

Xt = X"V X"V X = X i+ X2 } (8)
1=0,1,..M—1
are evaluated in a (short) sequential calculation. The number of equations is always twice the number of
processors. The values of x have been written with absolute indices but we may use a notation for individ-
ual processors. The pre-superscript p as used above denotes results from a given processor y so we could
write equally valid representations of x as

XuL+1 = Hx/l- (9)

Table 1
Example of the algorithm for a small number of processors

Processor 0

Processor 1

Processor 2

Processor 3

¥l =0 =1
w=1 =0

=0 =1
=1 »=0

Mo =0 =1

10 _ 1. 10 _
yie=L y7=0

Wy =0 =1
yi=1; y2=0

ya=aiy1+biyo
V3= a2 tboy

Yy7=daeys+ beys
ys=azy7+bys
Yyo=agys+bgy;

Y10=aoyo+boys
yu=aiyiotbioye

Vis=a1sy14+biayis
Yie=a1sy1s+bisyia
yi7=aieyi6t bievis

yis=ayyi7+biyie
Yio=aisyistbigyiz

Y23 =anyn+ by
V24=23Y23+ b23yay
V25=a24Y247F b2aya3

Y26= Gasyastbasyas
Y277 26V 26 bagyas

Y31=azoyso+bioyae
yn=azys +biyi
Y33=azyantbiys




576 W.R. Gibbs | Journal of Computational Physics 201 (2004) 573-585

In matrix notation, we may write Egs. (8) as

+1 14,10 14,01 m
xo\ i YL X0 (10)
utly \ uy,l0 1,01 By :

1 Y1 Vs 1/ y=0,1,..M~1

Table 2 shows the ratios of completion times to the purely sequential case to be expected with various
recursion lengths and number of processors. The increase in speed over scalar is M/2 for large N. One sees
that for moderate numbers of iterations, the scaling efficiency starts to fall of for a number of processors
beyond 64. Thus, for most practical problems, the algorithm is expected to work best for relatively large
numbers of iterations and a modest number of processors. This loss comes, of course, because of the need
to compute the matching relations which requires a time proportional to the number of processors. The
algorithm could be modified to spread this matching procedure over a number of processors but this exten-
sion is beyond the scope of the present work.

If only the end value of the sequence is needed one can stop at this point (the “short form” of the algo-
rithm). This factor of two cost is not the best that can be obtained if the values of @; and b; are being cal-
culated along with the iteration. The same values of these coefficients are used in each iteration and, if the
time for the calculation of the coefficients is significant, the overhead to calculate two iterations rather than
one (as would happen if the calculation were not in parallel) may be small.

The latency part of the communication time is proportional to L= M/N, so, for a fixed, moderate, num-
ber of processors and large N it may be made very small. There are four words per processor to be sent in
order to make the connection between segments.

At this point (if needed) one can proceed to calculate the entire sequence of values in a second parallel
calculation (the “long form™ of the algorithm). These will be given by

My =X = X"V F xS A=2,3, L+ 1; [u=0,1,....M—1]. (11)

These evaluations come at the cost of an additional 3L floating point operations per processor, roughly a
cost factor of 4, i.e., the speed increase is M/4 compared to the pure sequential algorithm. This cost can be
reduced greatly in certain cases as we shall see later. It may be useful to leave the strip functions (or even the
strip basis functions) in the processor where they were calculated.

Table 2
Strip iteration algorithm
n N=2" Sequential m=2 m=3 m=4 m=5 m=6 m=17 m=38
7 128 384 0.5625 0.3750 0.3750 0.5625 1.0312 1.0000 1.0000
8 256 768 0.5312 0.3125 0.2500 0.3125 0.5312 1.0156 1.0000
9 512 1536 0.5156 0.2812 0.1875 0.1875 0.2812 0.5156 1.0078
10 1024 3072 0.5078 0.2656 0.1562 0.1250 0.1562 0.2656 0.5078
11 2048 6144 0.5039 0.2578 0.1406 0.0938 0.0938 0.1406 0.2578
12 4096 12,288 0.5020 0.2539 0.1328 0.0781 0.0625 0.0781 0.1328
13 8192 24,576 0.5010 0.2520 0.1289 0.0703 0.0469 0.0469 0.0703
14 16,384 49,152 0.5005 0.2510 0.1270 0.0664 0.0391 0.0312 0.0391
15 32,768 98,304 0.5002 0.2505 0.1260 0.0645 0.0352 0.0234 0.0234
16 65,536 19,6608 0.5001 0.2502 0.1255 0.0635 0.0332 0.0195 0.0156
17 131,072 393,216 0.5001 0.2501 0.1252 0.0630 0.0322 0.0176 0.0117
18 262,144 786,432 0.5000 0.2501 0.1251 0.0627 0.0317 0.0166 0.0098
19 524,288 1,572,864 0.5000 0.2500 0.1251 0.0626 0.0315 0.0161 0.0088
20 1,048,576 3,145,728 0.5000 0.2500 0.1250 0.0626 0.0314 0.0159 0.0083

Column 3 gives the time to completion for straight iteration in one processor in units of the time required for one floating point
operation. Columns 4-10 give the ratio of the time to completion to the corresponding time for a purely sequential realization on a
single processor (column 3). The number of iterations is N=2" with a number of processors M =2"". This “power of two” represen-
tation is only for simplicity and is not needed for the algorithm.
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We can now compare with the matrix algorithm mentioned in Section 1. If we define

Xit1 a; b
= : = , 12
= () = (1 7) (12)
then
Xitl ai bi Xi
= = o), 13
(xi> (1 0><xil> i ( )

and the end member of the sequence is given by

<XN+1) =N = “NO‘N—IOCN—Z"'OH()CI)« (14)
XN X0

The multiplication of matrices can be done pairwise on different processors. The first multiplication of the
simple matrices can be done with two multiplications and one addition but this operation generates full
two-by-two matrices so that the second step in the pairwise reduction of the multi-factor product is a com-
plete matrix multiplication and requires eight multiplications and four additions. When compared with the
two multiplications and one addition necessary to actually do the iteration, one sees that there is a cost of a
factor of 4 which is paid in this case. Assuming 12 operations for all steps the maximum speed up with M
processors is M/4. The matrix algorithm gives only the end point of the sequence (i.e., not the intermediate
values) so is to be compared with M/2 from the algorithm just presented. With a modest number of proc-
essors, over half of the time of the matrix algorithm is spent in the first set of multiplications so that con-
siderable savings can be achieved by considering the special case for the first operation.

This cost factor is not the only problem. The work done in each matrix multiplication is not very much
(12 floating point operations). Hence, communication must take place between processors very often so
that message passing time may dominate.

Another possible problem is that often the entire sequence of x; is needed. This algorithm simply does
not give it.

Yi

2.2. Inhomogeneous recursion relation

For the inhomogeneous recursion,
Xiy1 = ax; + bixio1 + ¢y (15)

three basis solutions are needed to provide a general representation. For the third basis function, we can

take z", defined to have the starting conditions z)) = z)) | = 0. The general form of the solution is thus

x; = 0zl + B2 + 2%, (16)
where z°, 2" and z% all separately satisfy Eq. (15). The requirement that this form satisfies the recursion
relation is o+ f+y=1.
Using this last expression to replace y, we can write
x; = oz —20) + B —20) + 2. (17)
It is easy to show that

10— 10 _ 00 0l — 01 _ _00
v =z, —z; and y =z; —z (18)

satisfy the homogeneous equation (i.e., with ¢;=0) with the same starting points as the z!° and 2!, exactly as
in the homogeneous case treated before. Thus, the general form can be written as
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X = oy + By +2 (19)
where y!° and ?' can be calculated as in the previous section, i.e., without reference to c;.
The procedure in this case is first to calculate in parallel (either along with the #)Y or separately) the
(long) recursion

”ZEOH = a,uL+AMZE%0 + buL+/lﬂzg(11 + CuL+1s A= 1; 2; 3; cee 7L; [,u = Oa 11 s 7M - 1} (20)

Since both starting values of #z% are zero, the values of the coefficients of y!° and %' are again just the last
values from the previous processor so that the equations

_ 1,10 1,01 1,00 _ 0,10 .01 1,00
{x(u+1)L =Xu Yy T X"V 020 Xzt = X Ve T Xt Vet U200 g 00w (21)
or in processor notation,
(u+1) iy w1 10 uy. 01 1,00 (u+1) iy w1 10 uy. w01 w00
{*x0 = Fxofy” 4+ iy + 2, X=XV XY 20 g0 s (22)

need to be evaluated in a (short) sequential calculation.
If needed, the intermediate values in the recursive sequence can now be evaluated in parallel. These will
be given by
XﬂLH:qu”J’iOJquLHMJ’glJF”ZgO; )":27377L+17 [/,l:O,l,,M*I] (23)
or
My ="yl R0 02 A=23, L+ 1 [u=0,1,....M—1]. (24)

If the recursion relation is needed for a large number of functions, ¢;, with the same a; and b, then the basis
functions »'® and y°!' need be calculated only once.

3. Applications
3.1. Eigenvalues of a tri-diagonal matrix

The process of finding eigenvalues of a real tri-diagonal matrix plays a central role in the solution of the
eigenvalue problem of more general real symmetric matrices. Commonly, algorithms are converted to a
parallel environment either by having each processor search for an eigenvalue (method A) [2] or finding
all of the eigenvalues by means of divide-and-conquer algorithms (method B) [3]. It is often useful be able
to pick out only a few of the eigenvalues (the lowest ones) which is the case considered here.

For a symmetric tri-diagonal matrix,

a bl 0 0 0
b1 as b2 0 0
0 bz as b3 0

by_s ay-1 by 0
0 bN,1 ay bN
0 0 by  ayq

there exists a well-known solution for the eigenvalues, 4, (see, for example, [4,2]) based on Sturm sequences
with bisection which allows the selection of eigenvalues. With the definition
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)C():l; X1 :al—/l (26)

the recursion relation
Xitl = (ai+1 - A)xi - b,?xifl (27)

generates the determinant, D(A), of A — AT as the value of x4 . The eigenvalues of 4 can be found by lo-
cating the zeros of D(A). Furthermore, the number of sign differences between successive members in the
recursion sequence identifies the eigenvalues in order. For example, the lowest eigenvalue occurs at the tran-
sition from 0 to 1 sign differences in the sequence. The desired transition (and hence eigenvalue) can be
found with Newton’s method of bisecting some A,,;, and A, at each step.

Implementing this recursion in a parallel fashion is straightforward using the algorithm given in Section
2.1. In order to calculate the number of sign differences, the individual members of the sequence need to be
generated which requires the long form of the algorithm, thus seeming to cost a factor of 4 compared to a
non-parallelized version. However, a hybrid method makes the cost factor closer to 2 than 4. When the dif-
ference in sign count has been reduced to unity between A,,;, and A, it is known that a single eigenvalue
lies in this region and that it is the correct one. From this point on, the method needs only the final value of
the sequence (the determinant itself) which requires only half the time.

Hence, the algorithm can be thought of as proceeding in two phases. In the first phase, the desired ei-
genvalue is isolated by finding two values of the estimated eigenvalue with only a single zero of the deter-
minant between them. After that, in the second phase, only the value of the determinant is needed and with
those values one can estimate a new trial value more efficiently than a simple bisection by using

Amin ‘ D(Amax) | +Amax | D(Amin) ‘ )
| D(AmaX) | + | D(Amin) |

One must be careful of the convergence, since it may come about with the trial eigenvalue approaching one of
the limit eigenvalues without the two limits approaching each other. This improvement in efficiency is available
to either the parallel or non-parallel version and tends to make the first phase dominant in time consumed.

A common method of implementing this general algorithm on parallel computers is to simply give each
processor an eigenvalue to find (method A above). In this case, each eigenvalue is obtained in a purely sequen-
tial fashion but the values arrive in a parallel manner. In the present algorithm, each eigenvalue is calculated in
a parallel manner and the values arrive one after the other. One improvement which is not generally available
to method A is due to the availability of useful information after the first and subsequent eigenvalues are found
in the first phase. It is only necessary to keep a table of the tested values of A vs. the corresponding number of
sign differences. When the next eigenvalue is to be found, the table can be searched for the closest starting val-
ues. This table grows as the eigenvalues are found. If each processor is finding an eigenvalue starting from the
outer bounds of the eigenvalue sequence this advantage is not available.

An important consideration in this algorithm (parallel or non-parallel) is the growing of the values with
each step so that overflow occurs. One can solve that problem by performing a renormalization at regular in-
tervals. In the non-parallel version, when the value of x;, | is observed to exceed some predefined value then
both x;+ and x; are multiplied by an appropriate constant reducing factor. This does not change the number
of relative sign differences nor the sign of the last value. For the parallel version, both basis functions can be
renormalized in the same way (both must be done at the same time) and the recursion is not destroyed since it is
only the relative values of the basis functions which determines the number of sign differences and the sign of
the final value. In the version tested here, a check for renormalization was made every 16 steps.

The algorithm was calculated for the matrix defined by

A=

(28)

a;=0, i=1,2,..N+1; b =iN+1-1i), i=1,2,...N, (29)
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with N even. The eigenvalues are known to be the even integers from —N to N as presented in [2,5]. In ad-
dition to the renormalization mentioned above, the entire system was renormalized such that the smallest 57
was unity. Calculations were made for matrices of size up to N=10,240,000 finding eigenvalues to an ac-
curacy of 1 part in 10'". The method was tested on a Beowulf cluster with a 100 Mbit Ethernet (using
MPICH [6,7]) and the scaling efficiency [defined as T7/(MT),,), where T, is the time for execution on M
processors] exceeded 0.96 up through 4 processors.

The “cost” of the method was calculated by comparing one-processor versions of the present algo-
rithm with a simple sequential calculation but with the present algorithm taking advantage of the in-
formation contained in the table of the number of sign differences vs. trial A. For a single eigenvalue,
the present method takes about 2.5 times longer than method A. For five eigenvalues, it still takes
about 20% longer. For 10 eigenvalues, it is 0.85 as long, for 20 it is 0.72 as long and for 40 it requires
0.64 of the time for method A.

Procedure A also may suffer from an incommensurability with the number of processors. If one wishes 8
eigenvalues with 64 processors then only 1/8 of the capacity of the machine is being used. The calculation of
the relative efficiency of the methods can be quite complicated, however. For example, if one wishes 16 ei-
genvalues with 8 processors then two passes will be made with method A and in the second pass tables of
values accumulated in the first pass can be used. Incorporating this information could well make method A
faster.

3.2. Solving wave equations

Wave equations (the Schrodinger equation is considered here) can be solved, after an expansion in Leg-
endre polynomials, by means of one-dimensional second-order differential equations. An accurate solution
can be obtained with Noumerov’s method where the iteration equations for the reduced wavefunction are
given by

2=y — % (10w, +wiiii; ]

lpi = 2 ) (30)
- 1+ 5win
where
2m 6+ 1
w(r):kz—?V(r)— ( " ) (31)

and £ is the spacing in the radial variable r.

This form is converted readily into that considered in Section 2.1 with much of the work of the compu-
tation of a; and b; being done before the iteration. Keeping k” as a free parameter and precomputing one
vector

{1 - ﬁ—’;’ V(r) +W;2r 1)} }

the calculation of a; and b; requires seven floating point operations. Given that each iteration requires an
additional three operations, we might expect that the parallel algorithm involves a cost of an increase from
10 to 13 operations or about 30% over the purely sequential one.

In the present case, the Schrédinger equation is solved for a bound state. The solution is started at the origin
with zero for the first point and an arbitrary value for the second point and a search is made for a value of the
energy (expressed here as k?=2mE/#*) that causes the wavefunction at some large value of r to be zero.

The problem was treated with a near maximum precomputation of the values of ¢; and b;. Clearly, if
one chooses not to compute as much as possible in advance, and hence to spend a larger amount of time
in the computation of the coefficients, then the addition of a second iteration (the expense of this algo-
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rithm) would make less difference. Thus, a true test of the algorithm relies on a realistic degree of
precomputation.

The calculation was coded and tested for £=2. The number of steps taken was 25.2x10°. Because of the
boundary conditions of the problem (reduced wavefunction zero at the origin) the calculation of the basis
function y'° is not needed in the first processor. By comparing a one-processor calculation with it computed
or not it was found that the cost factor of the algorithm was 1.31, in agreement with the 30% increase es-
timated above. The method was tested on the Beowulf cluster and no decrease in scaling efficiency was seen
through 16 processors.

3.3. Tri-diagonal matrix solution

Consider the recursive solution to a tri-diagonal matrix (size N+ 2), at first without any parallelism.

ayp € 0 0 0 X0 Co
bl a, e 0 0 X1 C1
0 b2 a, e 0 X2 Cy
(32)
by_1 an-1 ey-i 0 XN-1 CN-1
0 bN ay ey XN CN
0 0 byt any XN+1 CN+1

If any e; (let the first occurrence be at i =k) is zero then the system can be reduced to two subsystems. To see
this, observe that the first equation alone consists of one equation in two unknowns, the first two equations
correspond to two equations in three unknowns, etc. If ¢, =0 then adding that equation to the system in-
troduces no new unknown so the system of the first k+1 equations can be solved alone giving the value
(among others) of x;. In the remaining equations, the kth column can be taken to the right-hand side so
that they can be solved. In this case, the system is separable. For a symmetric system, if ¢,=0 then
bi+1=0 also and the two blocks are completely decoupled. Here, it is assumed that this is NOT the case
so that NO ¢;=0. Thus, we can divide all equations by e; or, equivalently, we can set ¢;=1 in the system
we wish to consider. Of course, the conversion of a general system to this form entails the cost of one in-
verse and two multiplications per equation on the left-hand but needs to be done only once in the case of a
number of different right-hand sides (N+ 1 more multiplications are necessary for each right-hand side).
For these reasons, the following system is considered:

a 1 0 0 O X0 Co

bl a 1 0 0 X1 Ci

0 b, ao 1 0 X2 (&)
(33)

by_1 an- 1 0 XN-1 CN—1

0 by ay 1 Xy 9y

0 0 bvy1  ans XN+1 CN+1
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Starting from the second row, the equations can be expressed as the recursion relation
x,-+1=—a,-x,-—b,-xl-_1+c,-; i:1,2737...7N—1,N, (34)

where neither the first nor last equations have been used.

The three basis solutions discussed in Section 2.2 (called here f!°, £°! and g") can be used to provide
“global” basis functions (global in the sense that they represent the full recursion sequence to be distin-
guished from the strip functions to be discussed shortly) to express the solution. The first two basis solu-
tions do not involve ¢; and need only be calculated once for many right-hand sides. Thus, the solution
separates into two parts, somewhat similar to the common factorization and back substitution methods.
Once we have the basis solutions, we can apply the conditions implied by the first and last equation to de-
termine the coefficients o and f in Eq. (19). For the first equation, we have

aoxo +x1 = ao(afy” + By +80°) +ofi + B+ 8 =co (35)
or

apo.+ f = co. (36)
From the last equation, we have

an11Xn+1 + byiixy = aN+1(°CfN+1 + Bf; n+1 + gNH) + by (afy’ + BV + %) = cn (37)
or

aan 1/ + byvify’) + Bla o/ + bvaify') = envi — avagyhy — byvagy - (38)

From these two equations, we obtain o and f and all values of x; can be obtained from Eq. (19)
As an alternative to Eq. (38), one can iterate one further step with Eq. (34) to obtain f,°,, V., and g%,,
and use the condition that xy.,=0 to find

N+2 + ﬂfN+2 gN+2 (39)

Returning to the parallel considerations, we can express the global basis functions in terms of the strip basis
solutions in each processor, obtain the three global functions that were used in the above algorithm and
then calculate the solution. However, it is much more efficient to combine the two operations.

First write the global recursion basis functions in terms of the strip basis functions

10 10 10 10 Ol

;1L+)V - H + Hﬁ H (40)

1 01

;?L+) = My 01p '0+”[3 ,u ()l (41)
Gl = ) 2, @)

where the “a and “f are to be obtained from the matching conditions for u=1,2,..., M —1.

Hol0 — 111001 10_1_,u 1/310H 1 01 (43)
;tﬁlo — ;L—lalo,uflyi(jrl + ;L—IBIOM lygirl’ (44)
;tam — k- IOCOIM 1y10 _’_/,l lﬁOlp 1 01 (45)
[Lﬁol = laolu lyé(jrl +;1 1‘801;4 1 (211’ (46)

00
”OCOO n— laOOu 1y10+u lﬁ pn—1 01+,u 1 00 (47)
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,uﬂOO —_ u-l 00/1 1 10 +,u lﬁOOﬂ 1 01 _’_,U. IZ (48)
L+15
with the starting values
W01, 00 SR g S 1y O o g, )

Using the last two values of the global basis functions calculated from Egs. (40)—(42), we can solve for the
global o and f (from Egs. (36) and (38)) to write

Xy = "oty 0yt 0 g =23 L4 [u=0,1,...,M 1], (50)
where the coefficients are given by

o = oo pro®t 4 #o, (51)

uﬂ — O(“ﬁlo + ﬁpﬁol 4 yﬁOO. (52)

It is common to compare the relative speed of any algorithm for solving tri-diagonal matrices with Gaus-
sian Elimination (GE) which is relatively efficient. For this case, GE becomes first for the LU reduction

do =1/ag

g =bd; di=1/(a;—g), i=12,....,N+1, (53)
followed by the two back substitutions

Z=cy Z=c¢—gz, i=12,...,N+1 (54)
and

Xy =2y X=(z —xf)d:, i=N,N—-1,...,0. (55)

If we assume that the equations are being solved for many right-hand sides, then we should compare the
time for the solutions of the z°° equations and the calculation of the vector (Egs. (20) and (50)) with the
work of the two back substitutions in GE (Egs. (54) and (55)). A first estimation can be made for the rel-
ative speed by counting the number of floating point operations per step (4 for GE and 8 for the parallel
algorithm) to get a cost factor of 2. This is only a very crude estimate since the form of the equations is
different. For example, (50) requires only the broadcast of a scalar instead of vector multiplication. Opti-
mization or not of the G77 compiler was observed to make a large difference also. With no optimizing GE
does better than this estimate giving a cost factor of 2.6. However, with optimization, the efficiency of the
parallel method is improved more than GE to result in a cost factor of 1.4.

To save on message passing for the resultant vector, one may want to use the strips in the processor in
which they were formed. In some cases, it may be more efficient never to construct the vectors at all. As an
example of such a case, consider the problem of solving the set of equations for a large number of different
right-hand side vectors which are a function of some parameter, #, hence, ¢,(1). Suppose also that we wish
the sum (an integral perhaps) of some weighting function over the solution

(n) =Y wixi(n) (56)
i=0

as a function of #. The sum can be distributed among the strip basis functions in the processors via Eq. (50).
The y basis function integrals need be calculated only once. The z% integral can be calculated as this basis
function is generated. Only the strip integrals need to be sent to the master processor to be combined with
the coeflicients “a and “f. The calculation of the solution (Eq. (50)) is not needed. In this special case, a
count of the number of floating point operations estimates the speed to be the same as GE (in the limit
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of large N and large number of values of 7). In one-processor tests, because of the simplicity of the equa-
tions mentioned above, the strip algorithm was found to run somewhat faster than GE.

Large systems (720,720 x k with k=10, 20,40, 80,and 160) with 100 values of 1 were tested on the 16 proc-
essor Beowulf cluster. Essentially no degradation of performance was seen with all scaling efficiencies
> 0.99. The largest system tested (N=115,315,200) could only be run by spreading the solution basis vec-
tors over 13 processors.

A common algorithm discussed in the literature is the parallel cyclic reduction of a matrix [8]. The basic
cost of this algorithm has been reported to be a factor of 4 [9,10]. It requires frequent exchange of infor-
mation and is not very efficient for multiple right-hand sides. The “divide-and-conquer’” method [8] is also
inefficient for multiple driving terms. Hence, the technique presented here would seem to offer an attractive
alternative to these methods in some cases.

The restriction to e;#0 may prove to be inconvenient in some cases or the division may lead to large er-
rors. Tests with ¢;=1 showed that the stability of the method was as good or better than GE.

4. Discussion

These algorithms may also be useful on vector machines. For a processor with a 64 word vector register,
for the case of the homogeneous recursion relation, the total length can be broken into 32 strips with each
pair of words in the vector register acting as a processor. Thus, the iteration might take place as

10 10 10
Vit a; Vi b; Yici
01 01 01
Yit1 a; Vi b; Yi-1
10 10 10
Yitit1 apyi Yi+i bryi Yiti-1
01 01 01
Yititi ari Yivi bri Yiti-1
10 = X 10 + b x 10 (57)
YuL+it1 AuL+i YuL+i uL+i YuL+i-1
01 _ 01 ) 01
YuL+i+1 Apl+i YuL+i bur+i YuL+i-1
10 _ 10 i 10
V3lrtit A31L+i V3lLvi b3+ Y3lrti-1
01 _ o1 i 01
Vil tiv a31L+i YV3irti D31+ Vi i-1
for i=1,2,...,L.

The method can be generalized for a larger number of terms in the iteration (leading to larger width in
banded matrices, for example).

There are clearly some limitations to the application of the algorithm. The conversion to a parallel system
does not work for recursions nonlinear in x; so most classical mechanics calculations are not possible with it.

While the problems treated are different, this method appears to have some overlap with the Domain
Decomposition techniques for the solution of elliptic differential equations [11].
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